Amino Acid Residues 68–71 Contribute to Influenza A Virus PB1-F2 Protein Stability and Functions
نویسندگان
چکیده
Influenza A virus PB1-F2, encoding a multi-functional protein, is regarded as a virulent gene. Variation in expression pattern and protein stability among PB1-F2 proteins derived from different strains may explain why PB1-F2 functions in a strain- and cell type-specific manner. Because the protein stability of PB1-F2 affects its biological functions, we looked for sequences important for this property. By comparing variants and chimeric of PB1-F2 proteins from A/Hong Kong/156/1997 (H5N1) and A/Puerto Rico/8/1934 (H1N1), we identified amino acid residues 68-71 affect its protein stability. PB1-F2 with T68, Q69, D70, and S71 has a shorter protein half-life than its I68, L69, V70, and F71 counterpart. This is likely to do with proteasome-mediated degradation. Swapping amino acids 68-71 between two proteins reversed not only the length of protein half-life and sensitivity to MG132, but also subcellular localization and interferon antagonization. Our data suggested that composition of amino acids 68-71, which regulates protein stability and therefore its functions, can be a major factor determining strain-specificity of PB1-F2.
منابع مشابه
The Influenza Virus Protein PB1-F2 Inhibits the Induction of Type I Interferon at the Level of the MAVS Adaptor Protein
PB1-F2 is a 90 amino acid protein that is expressed from the +1 open reading frame in the PB1 gene of some influenza A viruses and has been shown to contribute to viral pathogenicity. Notably, a serine at position 66 (66S) in PB1-F2 is known to increase virulence compared to an isogenic virus with an asparagine (66N) at this position. Recently, we found that an influenza virus expressing PB1-F2...
متن کاملA Single Mutation in the PB1-F2 of H5N1 (HK/97) and 1918 Influenza A Viruses Contributes to Increased Virulence
The proapoptotic PB1-F2 protein of influenza A viruses has been shown to contribute to pathogenesis in the mouse model. Expression of full-length PB1-F2 increases the pathogenesis of the influenza A virus, causing weight loss, slower viral clearance, and increased viral titers in the lungs. After comparing viruses from the Hong Kong 1997 H5N1 outbreak, one amino acid change (N66S) was found in ...
متن کاملInfluenza A Virus PB1-F2 Gene in Recent Taiwanese Isolates
Influenza A virus contains eight RNA segments and encodes 10 viral proteins. However, an 11th protein, called PB1-F2, was found in A/Puerto Rico/8/34 (H1N1). This novel protein is translated from an alternative open reading frame (ORF) in the PB1 gene. We analyzed the PB1 gene of 42 recent influenza A isolates in Taiwan, including 24 H1N1 and 18 H3N2 strains. One H1N1 isolate and 17 H3N2 isolat...
متن کاملAmino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells.
It has been reported that the avian-origin influenza A virus PB1 protein (avian PB1) enhances influenza A virus polymerase activity in mammalian cells when it replaces the human-origin PB1 protein (human PB1). Characterization of the amino acid residues that contribute to this enhancement is needed. In this study, it was found that PB1 from an avian-origin influenza A virus [A/Cambodia/P0322095...
متن کاملStructural characterization and oligomerization of PB1-F2, a proapoptotic influenza A virus protein.
Recently, a novel 87-amino acid influenza A virus protein with proapoptotic properties, PB1-F2, has been reported that originates from an alternative reading frame in the PB1 polymerase gene and is encoded in most known human influenza A virus isolates. Here we characterize the molecular structure of a biologically active synthetic version of the protein (sPB1-F2). Western blot analysis, chemic...
متن کامل